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Abstract

We discuss numerical methods for linear and nonlinear transport equations with multiscale velocity fields. These
methods are themselves multiscaled in nature in the sense that they use macro and micro grids, multiscale test functions.
We demonstrate the efficiency of these methods and apply them to two-phase flow in heterogeneous porous media.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to construct efficient numerical methods for transport equations of the type
0021-9
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uet þr � ðaeðxÞf ðueÞÞ ¼ 0 ð1:1Þ

with an initial condition ueðx; 0Þ ¼ ue0. Here, ae(x) is some velocity field that varies on multiple length scales,
the simplest example being
aeðxÞ ¼ a x;
x
e

� �
; ð1:2Þ
where a(x,y) is a smooth vector-valued function of x and y, which is periodic in y with period I = [0,1]d.
Later on we will also study the case when a(x,y) is random in y. Our primary motivation comes from por-
ous medium flows where the multiscaled nature of the velocity field is a consequence of the multiple scales
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in the properties of the medium such as porosity and permeability. For example, in Buckley–Leverett equa-
tion, f is the fractional flow: f(u) = [vw/(vo + vw)], where vo = vo(u) and vw = vw(u) are the velocity of the oil
and water phases.

In principle we should also include diffusive terms in the saturation equations. There are three distin-
guished limits when both advection and diffusion terms are present. The first is when diffusion is dominant
at the small scale. The second is when diffusion and advection balance each other at the small scale. The last
is when advection is dominant at the small scale. The last case is the most difficult one, since in this case the
macroscale behavior exhibits memory effects, as we discuss below. In contrast, the macroscale behavior is
much more local in the first and second cases, and standard ideas such as the heterogeneous multiscale
method (HMM) applies. Therefore we will focus in this paper on the last case. In this situation the diffusion
term does not play any significant role, and hence we will neglect it for simplicity.

Various attempts have been made to design efficient numerical methods for problems of the type (1.1).
So far there has not been any general method that truly exploits the multiscaled nature of the problem.
Most numerical work in this area are either based on empirical closure or upscaling methods (see
[3,8,9,12,20]), or restricted to rather special flow fields (velocity fields). The difficulty is mainly due to the
fact that the effective behavior of the tracer field ue at large scales is rather complicated and may depend
on past history. As a result, general multiscale methods such as the heterogeneous multiscale method
(HMM) which has been successful for a large class of problems, does not work directly for the present
problem (for a discussion on this, see [5]).

Our basic assumption is that the microscopic behavior changes smoothly (in a statistical sense) over the
macroscale. Such a behavior can be efficiently probed using multiscale test functions. One can think of this
in the following way. At each macroscopic grid point, we do not just carry the function value at that par-
ticular grid point, but rather the complete information on the local microstructure (see Fig. 1). Such ideas
have been used analytically in the work of Nguetseng [15], E [4], Evans [11] and Allaire [1], and in the
numerical work of Schwab et al. [13,17]. But our work involves considerable extension.

In the following of the paper, we first discuss the homogenization results for linear multiscale transport
problems in Section 2. We present two numerical methods in Section 3 and some numerical results in Sec-
tion 4. In Section 5, we discuss two extensions for nonlinear transport problems and for problems with ran-
dom velocity fields. Then in Section 6, we apply the method developed in Section 5 to two-phase flow in
heterogeneous porous media. Finally in Section 7, we draw some conclusions.
2. Homogenization results

To better appreciate the complexity of the behavior of the solutions of (1.1), we first summarize the vari-
ety of homogenization results for the simplest case when the microstructure in the velocity field ae is peri-
odic and the flux is linear. We will also assume that a(x,y) is incompressible
rx � aðx; yÞ ¼ 0; ry � aðx; yÞ ¼ 0. ð2:1Þ
There are two types of homogenization results concerning (1.1). The first type aims at deriving homog-
enized equations for the local averages of ue, neglecting information on the microscale details. The second
type of results captures the local microscale details and represents them by introducing additional variables.
2.1. Effective equations for averaged quantities

We will deal with the two-dimensional case. The results summarized below might be special to two
dimensions.



Fig. 1. Illustration of the methodology. At each macroscale grid point in physical (x-) space, not only the function value at that point,
but the local microstructure is computed. The fine grid can be thought of as being in the y-space, the additional variables we use to
represent the microstructure, as we discuss below in Section 2. The size of the cells where fine grid computation is carried out is a few
times of the local correlation length of the microstructure for random velocity field, and is right a period for periodic velocity field.
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Let us assume that aeðxÞ ¼ ða1 x
e

� �
; a2 x

e

� �
Þ and
aðyÞ ¼ ða1ðyÞ; a2ðyÞÞ ¼ � ou
oy2

;
ou
oy1

� �
;

u is the stream-function associated with the velocity field a.

1. Ergodic velocity fields. Let
�a1 ¼
Z
½0;1�2

a1ðyÞdy; �a2 ¼
Z
½0;1�2

a2ðyÞdy.
Assume that �a1 and �a2 are incommensurate and that the velocity field a has no singular points, i.e.
a21ðyÞ þ a22ðyÞ > 0 for all y 2 ½0; 1�2, then it can be easily shown [4] that the solutions of
uet þrx � ðaeðxÞueÞ ¼ 0
have the form
ueðx; tÞ ¼ �uðx; tÞ þ oð1Þ;

where �u satisfies the equation
�ut þrx � ð�a�uÞ ¼ 0
with �a ¼ ð�a1; �a2Þ.
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2. Cellular flows. Consider the case when u(y) = sin2py1 sin2py2. The streamlines of a are all closed ex-
cept the separatrices. It is easy to see that in this case [4]
�uðx; tÞ ¼ lim
e!0

ueðx; tÞ ¼ u0ðxÞ.
In other words, the leading order term of ue satisfies the equation
�ut ¼ 0.
3. Shear flows. Let a(y) = (a1(y2),0), where a1(y2) is periodic in y2 with period [0,1]. In this case, ue has the
form
ueðx; tÞ ¼ U x1; x2;
x2
e
; t

� �
þ oð1Þ;
where U(x1,x2,y2, t) is periodic in y2 with period [0,1]. If we define
�uðx; tÞ ¼
Z
½0;1�

Uðx1; x2; y2; tÞdy2;
then �u ¼ �uðx; tÞ satisfies [18]
�ut þ �a1�ux1 ¼
o2

ox21

Z 1

�1
dxðkÞ

Z t

0

�uðx1 þ kðt � sÞ; x2; sÞds;
where dx(k) is a measure determined by a1.
This example illustrates the complexity of the dynamics of the locally averaged quantities �u: it is nonlocal

and has memory effects. As a result, HMM type of methods are not directly applicable to such problems
[5,6].

These three examples illustrate the complex variety of behavior that can occur, depending on the nature
of the small scale velocity fields. It also shows that when designing the numerical methods, it is important to
keep at some parts of the microscale information. This is the guideline that we will follow below.

2.2. Parameterizing the microstructure

An alternative homogenization approach is to introduce additional variables to parameterize the micro-
scale behavior of the solutions. For the transport equations this was done in [4] using a result of Nguetseng
[15]. Here we provide a less rigorous but more intuitive derivation.

The basic idea is to probe the multiscale behavior of ue using multiscale test functions. Writing (1.1) in a
weak form (for linear case: f(u) = u)
Z

R2�Rþ
ðue

t u
e þ ðrxu

e � aeÞueÞdxdt þ
Z
R2

ueðx; 0Þueðx; 0Þdx ¼ 0
for all sufficiently smooth ue with compact support in R2 � ½0;1Þ and with the form ueðx; tÞ ¼ uðx; xe ; tÞ. Let
us assume that ue has the form
ueðx; tÞ ¼ U x;
x
e
; t

� �
þ oð1Þ;
where U(x,y, t) is periodic in y. Noticing that
Z
R2�Rþ

U x;
x
e
; t

� �
u x;

x
e
; t

� �
dxdt !

Z
R2�½0;1�2�Rþ

Uðx; y; tÞuðx; y; tÞdxdy dt;
as e ! 0, we obtain, to the leading order that
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Z
R2�½0;1�2�Rþ

ðryuðx; y; tÞ � aðx; yÞÞUðx; y; tÞdxdy dt ¼ 0.
Since u is arbitrary, we obtain
ry � ðaðx; yÞUðx; y; tÞÞ ¼ 0 ð2:2Þ
in the sense of distribution.
Next we let ueðx; tÞ ¼ uðx; xe ; tÞ, but u satisfies
ry � ðaðx; yÞuðx; y; tÞÞ ¼ 0;
i.e. for fixed (x, t), u is constant along the streamlines of a, we obtain
Z
R2�Rþ

dxdt
Z
½0;1�2

ðut þrxu � aÞUðx; y; tÞdy þ
Z
R2

dx
Z
½0;1�2

uðx; y; 0ÞU 0ðx; yÞdy ¼ 0; ð2:3Þ
where U0(x,y) is the weak limit of ueðx; 0Þ ¼ ue0ðxÞ. This is the weak form of the homogenized equation for
U. Denote by H the subspace of L2

locðR2 � Rþ � ½0; 1�2Þ that consists of functions u satisfying (2.2), i.e.
H ¼ u 2 L2
locðR2 � ½0; 1�2 � RþÞ : ry � ðaðx; yÞuðx; y; tÞÞ ¼ 0

n o
; ð2:4Þ
where the equation is valid in the sense of distribution. Let P be the L2 projection operator to H, i.e. for
w 2 L2

locðR2 � ½0; 1�2 � RþÞ; Pw 2 H such that
Z
R2�½0;1�2�Rþ

Pwvdxdy dt ¼
Z
R2�½0;1�2�Rþ

wvdxdy dt 8v 2 H.
Then we can reformulate the equations for U as
U 2 H; PðUt þrx � ðaUÞÞ ¼ 0 ð2:5Þ

with initial data U(x,y, 0) = U0(x,y).

Or in an equivalent form as
U 2 H; Ut þrx � ðaUÞ 2 H? ð2:6Þ

with initial data U(x,y,0) = U0(x,y).

It is useful to consider some special examples.

Example 1. The shear flow. In this case, the homogenized equation takes the form U = U(x,y2, t),
Ut þ a1ðy2ÞUx1 ¼ 0. ð2:7Þ

Note that in this form, the homogenized equation is quite simple and has no nonlocal and memory effects.

Example 2. Ergodic velocity fields. In this case H consists functions that are independent of y. Hence
U = U(x, t) and
Ut þrx � ð�aUÞ ¼ 0.
Example 3. One-dimensional case. If we apply the same technique to the one-dimensional model
uet þ ðaeueÞx ¼ 0;
we then get the following system of homogenized equations for U = U(x,y, t):



X. Yue, W. E / Journal of Computational Physics 210 (2005) 656–675 661
oyðaðx; yÞUÞ ¼ 0;Z 1

0

ðUt þ ðaUÞxÞdy ¼ 0.
Assuming that a(x,y) 6¼ 0, we can write
Uðx; y; tÞ ¼ W ðx; tÞ
aðx; yÞ .
Then we have
Z 1

0

W t

aðx; yÞ dy þ
Z 1

0

W x dy ¼ 0.
Hence
W t þ
Z 1

0

1

aðx; yÞ dy
� ��1

W x ¼ 0.
3. Numerical methods

Next we discuss how to solve (2.5) numerically. Even though (2.5) is only derived for the special case of
periodic homogenization, the basic underlying idea, namely to evolve the local microstructure of ue instead
of just values of ue at equally spaced grid points, is of general relevance. We will discuss this in Sections 5
and 6.

3.1. The penalty method

Regarding Eq. (2.2) as a constraint, we can deal with it by penalty method. First we define an energy
functional F(U) by
F ðUÞ ¼ 1

2

Z
Y
j a � ryU j2dy
for U 2 G = {U is periodic w.r.t y 2 Y = [0,1]2 and a Æ $yU 2 L2(Y)}. It is easy to see that U is a minimizer
of F(U) if and only if a Æ $yU = 0.

The variation of F(U) is
dF ðUÞ
dU

ðV Þ ¼
Z
Y
ða � ryUÞða � ryV Þdy ¼ �

Z
Y
a � ryða � ryUÞV dy

¼ �
Z
Y
ry � ðaaTryUÞV dy; for V periodic in y;
where we have used the incompressibility condition (2.1). aaT is a 2 · 2 semi-positive definite matrix with
rank 1.

To minimize the energy functional F(U), we use a relaxation method, i.e. we solve the relaxed problem
dU d

dt
¼ � 1

d
dF ðU dÞ
dU d
in order to reach an equilibrium state. Overall, the penalty scheme can be formulated as: find Ud(x,y, t),
such that
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otU d þrx � ðaðx; yÞU dÞ ¼ � 1

d
dF ðUÞ
dU

¼ 1

d
ryðaaTryU dÞ;

U dðx; y; 0Þ ¼ U 0ðx; yÞ;
ð3:1Þ
where d is the penalty parameter.

Remark 1. With the penalty term $y(aa
T$yUd) = a Æ $y(a Æ $yUd) in (3.1), we have
otU d þrx � ðaðx; yÞU dÞ 2 H?;
since for any periodic function q(y) 2 L2(Y), by integration by parts,
Z
Y
ða � ryqÞuðyÞdy ¼

Z
Y
qðyÞry � ðauÞdy ¼ 0 8u 2 H;
i.e. a � ryq 2 H?.

Remark 2. The solution of the penalty equation (3.1) will convergence to that of the original homogenized
equation (2.5) with the same initial condition when d ! 0.

To solve the penalty problem (3.1) efficiently, we use the operator splitting method.

Algorithm 1. At each time step tn, given Un:

� Step 1. For any y 2 Y = [0,1]2, find U*(x,y) = U(x,y, tn+1) by
Ut þrx � ðaUÞ ¼ 0; x 2 X � R2;

Uðx; y; tnÞ ¼ Unðx; yÞ;
ð3:2Þ
with prescribed boundary condition on the inflow part of the boundary.
� Step 2. For any x 2 X, solve the following problem in (tn, tn+1):
Ut �
1

d
ryðaaTryUÞ ¼ 0; y 2 Y ;

Uðx; y; tnÞ ¼ U �ðx; yÞ;
ð3:3Þ
subject to periodic boundary condition. Then set Un+1 = U(x,y, tn+1).

The time step Dt = tn+1 � tn is determined by the CFL restriction (e.g. the CFL number is less than 1)
when (3.2) is solved on a macro spatial grid for any fixed y 2 Y. To solve (3.3) in Step 2, the same time step
Dt is employed. Implicit scheme may be used in this step in order to make sure of the numerical stability.

3.2. The projection method

The homogenized equation (2.6) has the same structure as the incompressible Navier–Stokes equation
u 2 H ¼ fu 2 ðL2ðXÞÞ2 : divu ¼ 0g;
ut þ ðu � rÞu� lDu ¼ �rp 2 H?.
This motivates us to design a projection method along the line of Chorin�s work [2]. The general strategy is
as follows:
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Algorithm 2. At each time step, given {Un}, we proceed in two steps:

� Step 1. Advance Un to U* by solving
Ut þrx � ðaUÞ ¼ 0;

Uðx; y; tnÞ ¼ Unðx; yÞ;
ð3:4Þ
and let
U �ðx; yÞ ¼ Uðx; y; tnþ1Þ.

� Step 2. Un+1 is set to be the projection of U* onto H in the sense of L2.

The projection operator amounts to averaging over ergodic components of the dynamical system
associated with a on a torus T2. The efficiency of this algorithm hinges on whether this can be realized
efficiently. So far we have only succeeded in finding efficient approximations to the projection operator for
special flows fields. However, note that for both methods, the first steps of (3.2) and (3.4) are the same. The
second step of the penalty method (3.3) can be regarded as an approximate projection. In the following, we
will focus our discussion on penalty methods.

4. Numerical results

In this section, we present some numerical results for the penalty method. The results show that, by
introducing the new independent variable y, we not only avoid treating the nonlocal and memory effect,
but also capture some details in the microstructures, which is impossible with previous methods that only
consider the macro homogenized equation for U(x, t).

In these computations, the time step is adaptively defined by the CFL restriction that the CFL number is
less than 0.8.
4.1. Shear flow

Consider the following problem:
otue þ a
x2
e

� �
ox1ue ¼ 0; x 2 ð�1;1Þ � ð0; 1Þ; t 2 ð0; T Þ;

ueðx1; x2; 0Þ ¼ u0ðx1; x2Þ;
ð4:1Þ
with velocity a ¼ aðy2Þ ¼ 1þ sinð2py2Þ and the initial data
u0ðx1; x2Þ ¼
1.0 if x1 < 0;

0.2 if x1 P 0.

�

Terminal time is set at T = 0.3. For t 6 T, we can reformulate this problem on a bounded domain
X = (0,1) · (0,1)
otue þ a
x2
e

� �
ox1ue ¼ 0; ðx; tÞ 2 X� ð0; T Þ;

ueð0; x2; tÞ ¼ 1.0; x2 2 ð0; 1Þ; t 2 ð0; T Þ;
ueðx1; x2; 0Þ ¼ 0.2; x 2 X.
We solve the corresponding penalty equation (3.1) for (x,y, t) 2 (0,1)2 · (0,1)2 · (0,T) by Algorithm 1
with the penalty parameter d = 0.1.



664 X. Yue, W. E / Journal of Computational Physics 210 (2005) 656–675
To see the effectiveness of the penalty method, we first look at the maximum energy defined as
maxx 2 X�Yja Æ$yUdj2dy. We see in Table 1 that the energy is so small that we can neglect the penalty term
in the penalty equation (3.1). Thismeans thatwe actually solved the homogenized equation for shear flow (2.7)
Table
Maxim

Time

0.1
0.2
0.3

Maxim
penalt

Fig. 2.
grid, w
otU þ aðy2Þox1U ¼ 0.
By the method of characteristics, we have U(x,y, t) = U0(x1 � a(y2)t,x2). If we replace y by x/e, we get the
exact solution for the shear flow (4.1).

Macro behavior. In Fig. 2, we present the result for U(x, t) = (1/jYj)�Y Ud(x,y, t)dy. It is apparent that the
macro solution U displays diffusive behavior.

Local microstructure. Our method also captures the local microstructure at macro grid points. One
example of such local microstructure is shown in Fig. 3.

Convergence as h ! 0. The fine scale solution to this problem is ue = u0(x1 � a(x2/e)t,x2). To obtain the
exact macroscale solution, we average ue over the macro grid cell. The error between this exact macroscale
solution and the computed solution U(x, t) = (1/jYj)�YUd(x,y, t)dy by Algorithm 1 is displayed in Table 2.
We see that the error converges to zero, but with fractional order of accuracy.

4.2. Flow with channels and islands

Consider the case when the stream-function is selected as
1
um energy at different time steps

Maximum energy

1.11340120E � 7
1.13339647E � 7
1.13354346E � 7

um energy is defined by maxx2X
R
Y ja � ryUdj2 dy. Macro partition: NX1 = NX2 = 20; micro partition: NY1 = NY2 = 12;

y parameter d = 0.1.

Macro solution U(x, t) at time = 0.1 (left); time = 0.3 (right). The macro grid is specified by NX1 = NX2 = 32. At each macro
e resolve the local cell Y with a NY1 = NY2 = 16 micro grid. Penalty parameter d = 0.1.



Fig. 3. The local microstructure behavior at the macro grid point x2 = 0, at different x1. The microstructure is independent of y1.
Therefore we only plotted the y2-dependence over the cell of size e. Penalty parameter d = 0.1. Time = 0.1 (left); time = 0.3 (right).

Table 2
Convergence in macro scale of the shear flow as h! 0

Macro NX1 · NX2 Micro NY1 · NY2 Relative L2 error

8 · 8 8 · 8 0.067799
16 · 16 16 · 16 0.045652
32 · 32 16 · 16 0.034779

Time = 0.3; e = 1/128; penalty parameter d = 0.05.
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uðyÞ ¼ sinð2py1Þ sinð2py2Þ=ð4pÞ �
y2
5
; ð4:2Þ
i.e.
a1ðyÞ ¼ 0.2� sinð2py1Þ cosð2py2Þ=2; a2ðyÞ ¼ cosð2py1Þ sinð2py2Þ=2. ð4:3Þ

The streamlines are shown in Fig. 4. We can see that in each cell, there are 4 islands separated by some
channels. The initial data u0(x) is chosen as
u0ðxÞ ¼
0.2 if x 2 ½1=4; 3=4� � ½1=4; 3=4�;
1.0 otherwise.

�

On a finite time interval we may replace the original problem by
otue þr � ðaðx=eÞueÞ ¼ 0 in X ¼ ð0; 1Þ2;
uejoX ¼ 1.0;

uðx; 0Þ ¼ u0ðxÞ.
The whole domain [0,1]2 is divided into a uniform 16 · 16 grid. At each macro grid point, we resolve the
fine scale details by a 32 · 32 grid over the square local micro cell Y = [0,1]2, which is of size e in physical
domain.

As before, we first look at the effectiveness of penalty operator. In Table 3, we show the
maxx�Yja Æ$yUd(x,y)j2dy for different d at time t = 0.3.

It is obvious that the convergence rate is of first order. Note that the penalty term in the penalty equation
(3.1) only acts as streamline diffusion. But as a result of discretization, numerical cross-stream diffusion is
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Fig. 4. Streamlines in a cell (one period).

Table 3
Energy convergence as d! 0

d maxx
R
Y ja � ryU dðx; y; tÞj2 dy

0.4 0.0324507998
0.2 0.0139849046
0.1 0.0075101523
0.05 0.0036522540

Time = 0.3.
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introduced. This diffusion effect increases as the penalty parameter d decreases. Therefore in choosing d, one
has to consider the balance between effectiveness of averaging over the stream line and cross-stream
diffusion.

Local microstructure. In Fig. 5, we plot the microstructure at the macro grid point ðx1; x2Þ ¼ ð 5
16
; 1
2
Þ. The

effect of islands and channels is apparent.
Macro behavior. In Fig. 6, we show the result on U(x, t) = (1/jYj)�YUddy.
Convergence as h ! 0. For e = 0.02, we solve the original problem on fine grid 1024 · 1024 to obtain

the �exact� solution. We then average the fine scale exact solution over the macro cell to obtain the mac-
roscale exact solution. In Table 4, we present the result of the convergence study of the error between
the macro average of the �exact� solution and the macro solution U(x, t) = (1/jYj)�YUd(x,y, t)dy by
Algorithm 1.



Fig. 5. Details inside the micro cell at (x1,x2) = (5/16,1/2), d = 0.1. Left: time = 0.1; Right: time = 0.3. The darker color regions are
occupied by the islands and the lighter color regions are occupied by the channels.

Fig. 6. Macro behavior of the flow with islands and channels at time = 0.1 (left), time = 0.3 (right); d = 0.1; macro grid:
NX1 = NX2 = 16; micro grid: NY1 = NY2 = 32.

Table 4
Error in the macro scale solution when the macro and micro grids are refined

Macro NX1 · NX2 Micro NY1 · NY2 Relative L2 error

8 · 8 8 · 8 0.120962
16 · 16 16 · 16 0.085031
32 · 32 32 · 32 0.073206

Time = 0.3, e = 0.02, d = 0.05.
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5. Extensions

It is important to note that the methodology developed here is much more general than solving linear
transport equations with velocity fields that have periodic microstructures. We will discuss extension in
two particularly interesting directions.

5.1. Nonlinear flux functions

We first consider the nonlinear transport problem.
otue þr � a x;
x
e

� �
f ðueÞ

� �
¼ 0; x 2 R2; t 2 Rþ;

ueðx; 0Þ ¼ u0ðxÞ; x 2 R2;
ð5:1Þ
where the velocity field ae ¼ aðx; xeÞ satisfies (2.1). The extension to nonlinear flux functions is quite straight-
forward. The homogenized equation takes the form [4]
ry � ðaf ðUÞÞ ¼ 0; Ut þrx � ðaf ðUÞÞ 2 H?. ð5:2Þ
Note that the space H remains the same as before, and the first equation means that the flux f(U) is con-
stant along the streamlines. So it is sufficient to assume that the unknown U is constant along the stream-
lines, ry � ðaðyÞUÞ ¼ aðyÞ � ryU ¼ 0; i:e: U 2 H. Therefore, we can reformulate the homogenized
equation (5.2) as
Uðx; y; tÞ 2 H; Ut þrx � ðaf ðUÞÞ 2 H?. ð5:3Þ

Similarly to the linear flux case, the penalty method can be used to solve this problem.

Algorithm 3. At each time step tn, given Un:

� Step 1. For any y 2 Y = [0,1]2, find U*(x,y) = U(x,y, tn+1) by
Ut þrx � ðaf ðUÞÞ ¼ 0; x 2 X � R2;

Uðx; y; tnÞ ¼ Unðx; yÞ;
ð5:4Þ
with prescribed boundary condition at the inflow part of the boundary.
� Step 2. For any x 2 X, solve the following problem in (tn, tn+1):
Ut �
1

d
ryðaaTryUÞ ¼ 0; y 2 Y ;

Uðx; y; tnÞ ¼ U �ðx; yÞ;
ð5:5Þ
subject to periodic boundary condition. Then set Un+1 = U(x,y, tn+1).

In the following, we show a numerical example using this algorithm. We consider the problem (5.1) in a
unit square X = [0,1]2 with the velocity field a and the flux f(u) given by
a ¼ ða1; a2ÞT; a1ðyÞ ¼ a1ðy1; y2Þ ¼ 1.1� cosð2py2Þ; a2 ¼ 0;

f ðuÞ ¼ u2

u2 þ ð1� uÞ2=M
;

and subject to the following boundary and initial conditions:



Table 5
Convergence in macro scale of nonlinear transport equation as h! 0

Macro NX1 · NX2 Micro NY1 · NY2 Relative L2 error

8 · 8 8 · 8 0.092711
16 · 16 16 · 16 0.040398
32 · 32 16 · 16 0.028949

Time = 0.6, M = 2, e = 0.02, d = 0.05.
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uðx; 0Þ ¼ 0; x 2 X;

u ¼ 1 at left boundary x1 ¼ 0.
In Table 5, we present the numerical results for the macroscale behavior of the solution. As before, to ob-
tain the exact solution, we first compute the fine scale solution on a fine mesh, then average this fine scale
solution over the macro cell to obtain the ‘‘exact’’ macroscale solution. The error between this ‘‘exact’’ mac-
roscale solution and the computed macroscale solution is shown in Table 5.
5.2. Random velocity fields

Consider the case when aeðxÞ ¼ aðx; xeÞ, and a(x,y) is a random stationary process in y, for each fixed x.
e = (e1, e2) is the correlation length in the x1,x2 directions respectively. In this case we can approximate
a(x,y) by periodic functions in y with sufficiently large periods that capture the essential statistics of a. This
was done in [14] for the pressure equation in porous media (elliptic homogenization problem). The same
principle can be adopted here (see Fig. 1). The basic philosophy is to probe at each macro grid point
the local microstructure, instead of just the function values at that grid point. If the local microstructure
is periodic, the size of the local cells may be exactly equal to that of a period. Otherwise the size of the local
cells is a few times of the local correlation length of the microstructure.

Denote by Xc the set of the macro grid point, and still by Y the set of the micro grid point of the local
cell. (Note that Y is the actual local computational micro cell now, not the unit square in periodic case con-
sidered earlier.) We propose the following numerical procedure:

Algorithm 4. At each time step tn, given Un:

� Step 1. For any y 2 Y, find U*(x,y) = U(x,y, tn+1) by solving the following problem on the macro mesh
with mesh points Xc:
Ut þrx � ðaf ðUÞÞ ¼ 0;

Uðx; y; tnÞ ¼ Unðx; yÞ;
ð5:6Þ
with prescribed boundary condition at the inflow part of the boundary.
� Step 2. For any x 2 Xc, solve the following problem in (tn, tn+1) on the micro grid with grid points Y
Ut �
1

d
ry � aaTryU

� �
¼ 0;

Uðx; y; tnÞ ¼ U �ðx; yÞ;
ð5:7Þ
subject to periodic boundary condition. Then set Un+1 = U(x,y, tn+1).

Remark. Even if we choose the micro cell Y to be the same size as the macro cell, the cost of this algorithm
is much less than the fine grid method, because we can employ macro time steps in Step 1 rather than micro
time steps in fine grid method.
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To demonstrate the efficiency of this algorithm, we consider the problem (5.1) in a unit square X = [0,1]2

with a random velocity field a and the flux f(u) given by
Fig. 7
Time =
f ðuÞ ¼ u2

u2 þ ð1� uÞ2=M
;

and subject to the following initial and boundary conditions:
uðx; 0Þ ¼ 0; x 2 X;

u ¼ 1 at x1 ¼ 0.
The random velocity field a is given by Darcy�s law a = �K$p, where K = K(x1/e1,x2/e2) is a stochastic log-
normal permeability field (the normal field is mean-zero with variance r2 and correlation length e = (e1, e2))
and the pressure p satisfies that
�r � ðKrpÞ ¼ 0 in X ð5:8Þ

subject to the boundary conditions: p = 1 at the left boundary x1 = 0; p = 0 at the right boundary x1 = 1;
the top and bottom boundaries are close to flow op/on = 0.

First we generate a realization of a log-normal permeability field K by the moving ellipse averaging
method [19] on a 512 · 512 mesh (the normal field is mean-zero with variance r2 = 1 and correlation length
e1 = 0.08, e2 = 0.01). Then we solve (5.8) on the 512 · 512 grid to obtain the velocity field a. Lastly we solve
(5.1) with the prescribed initial and boundary conditions by Algorithm 4. In Fig. 7, the result is presented
on the finest 512 · 512 grid. In Fig. 8, we present the result of Algorithm 4 on a coarse 32 · 32 grid with the
local micro cell chosen to be the same size as the macro cell. It can be seen that some features of the solution
are captured.

One can see that there is still appreciable amount of error in the numerical solutions computed by the
multiscale method. In particular, the numerical solution gives an earlier first arrival time. This is mainly
due to the lack of sufficient resolution at the small scales.
. Fine grid solution for problem with a typical realization of random velocity field. e = (0.08,0.01), r = 1.0, M = 2. (left)
0.1; (right) time = 0.2.



Fig. 8. Coarse grid solution for problem with a typical realization of random velocity field. e = (0.08,0.01), r = 1.0, M = 2, d = 0.1.
(left) Time = 0.1; (right) time = 0.2.
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6. Two-phase flow in porous media

We apply the algorithm developed in the previous section to two-phase flow in porous media, under the
assumption that the displacement is dominated by viscous effects; i.e., we neglect the effects of gravity, com-
pressibility, and capillary pressure. Porosity is taken to be constant. The two phases are referred to as being
water and oil, designated by subscripts w and o, respectively (see [8]). Combining Darcy�s law with the con-
servation of mass allows us to write the governing equations in terms of the so-called pressure and satura-
tion equations:
r � ðkðsÞKrpÞ ¼ 0; ð6:1Þ
os
ot

þ v � rf ðsÞ ¼ 0; ð6:2Þ
where s is the saturation of the water phase satisfying that 0 6 s 6 1, p is the pressure, K is the absolute
permeability of the porous media, k is the total mobility, f is the fractional flow of water, and v is the total
velocity:
kðsÞ ¼ KrwðsÞ
lw

þ KroðsÞ
lo

;

f ðsÞ ¼ Krw=lw

Krw=lw þ Kro=lo
;

v ¼ vw þ vo ¼ �kðsÞKrp.

ð6:3Þ
In the above, krw,kro are the relative permeability of water and oil phases, respectively; vw = �(Krw(s)K/
lw)$p and vo = �(Kro(s)K/lo)$p are the velocity of water and oil phase given by Darcy�s law. Due to
the heterogeneity of the porous media, we assume the absolute permeability has the form K ¼ kðx; xeÞ, where
e is the local correlation length.

The pressure equation (6.1) can be upscaled in many ways, for example, using the heterogeneous
multiscale method (HMM, [5]). The saturation equation, however, is a different story. We have seen in
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the previous sections that even for the simplest case when the microstructure is locally periodic, the
macroscale behavior of the solutions to the transport equation can be quite complicated, and in particular,
depends on memory. Current upscaling procedures for the saturation equation used either moment aver-
aging or volume averaging (see [3,8,9,12]). They are all a bit ad hoc at some level. Furthermore, the pressure
equation (6.1) and the saturation equation (6.2) is coupled, the microstructure of the saturation is needed to
upscale the pressure equation. Such information is absent with the moment or volume averaging methods
discussed earlier. However, the procedure proposed here does yield some microscale information, which
makes it possible to upscale the whole system.

Algorithm 5. At each time step tn, given Sn(x,y):

� Step 1. Upscale the pressure equation (6.1) to obtain Pn(x) (by HMM-finite volume method), and
retrieve the microscale velocity vn (6.3) at the place needed (refer to Fig. 1), by the periodic extension
method for the periodic case [5,7] or by a post-processing procedure for the random case [16,14].

� Step 2. Upscale the saturation equation (6.2) to obtain Sn+1(x,y) by Algorithm 3 for the periodic case
and by Algorithm 4 for the random case.

Remark. Heterogeneous multiscale method (HMM, [5]) has two main components:

� Selecting the macroscale solver (we choose the finite volume method).
� Estimating the needed data for implementing the selected macroscale solver, using the microscale model
(an implementation for elliptic homogenized problems can be found in [14]).

In the following, we present some numerical results. The domain of the porous media is taken to be the
unit square. In all cases, we fix pressure and saturation (s = 1) at the inlet edge (left: x1 = 0) and we also fix
the pressure (less then that at inlet edge) at the outlet edge (right: x2 = 1.0). The top and bottom edges are
closed to flow. We set the relative permeability of oil and water to be simple quadratic functions of their
respective saturations; i.e.,
Krw ¼ s2; Kro ¼ ð1� sÞ2.
Let M be the ratio of oil and water viscosity (M = lo/lw). Results are presented in terms of oilcut (i.e., the
fraction of oil in the produced fluid qo/qt, with qo being the volumetric flow rate of oil produced at the outlet
edge and qt being the volumetric flow rate of total fluid produced at the outlet) versus pore volumes injected
(PVI). PVI is analogous to dimensionless time and is defined as

R t
0
qtðsÞds=V p, where t is dimensional time

and Vp is the total pore volume in the whole media.
Periodic case. In this case, we assume the porous media is periodic. We set the absolute permeability to

be
K x;
x
e

� �
¼ 1.2þ sinð2px1=eÞ

1.2þ sinð2px2=eÞ
þ 1.2þ sinð2px2=eÞ
1.2þ cosð2px1=eÞ

þ sinð4ðx21 þ x22ÞÞ þ 1
with e = 1/64. The result is depicted in Fig. 9. The solid curve was obtained by solving the two-phase system
on a 512 · 512 grid, and the dash curve was obtained by Algorithm 5 on the coarse 16 · 16 mesh, with
M = 2, d = 0.05.

Random cases. As an example of random media, the absolute permeability field K = K(x,x1/L1,x2/L2) is
taken to be a log-normal stochastic field, and the mean-zero normal filed is randomly generated with
parameters: L1, which is the correlation length in the x1 direction and L2, which is the correlation length
in the x2 direction. The variance is r2. We computed two examples: one for L1 = L2 = 0.02,r = 1.0 and
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Fig. 9. Fractional flow of oil at outlet edge for the case of periodic media. e = 1/64, M = 2, d = 0.05.
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the other for L1 = 0.08,L2 = 0.02,r = 1.0. The results were shown in Fig. 10 for two typical realizations of
the log-normal absolute permeability field generated by the moving ellipse averaging method.

Comparing Figs. 9 and 10, we see that the numerical solution is much more accurate for the periodic case
than for the random case. This is not a surprise, since in the random case, there is a phase error that con-
tributes to the dynamics.
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7. Conclusions

We have developed a method whose cost is independent of e. The basic philosophy is to probe at each
macro grid point the local microstructure, instead of simply the function values at that grid point. The local
microstructure is encoded in the dependence on y, the new independent variable introduced.

We have found, as expected, that the numerical results are more accurate for the case of periodic micro-
structure than for the case of random microstructure. The reason is as follows. In the periodic case, the
solutions have the so-called ‘‘two-scale regularity’’ [13], i.e. the microscale structure varies smoothly (point-
wise) on the macroscale. In the random case, even though this is still true in a statistical sense, it is not true
in the pointwise. Nevertheless, our evolution algorithm does make use of this smoothness in the pointwise
sense, since we use interpolation to recovers values of the velocity field in the regions which are not repre-
sented by the grid shown in Fig. 1. Our next task is to extend the methodology presented here to capture the
statistical behavior in the random case.

This methodology can be extended to other systems such as the Carleman equation [10,5] for which
HMM does not work directly [5].
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